\(\int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx\) [187]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 90 \[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=-\frac {2 a e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+\frac {2 a e \sqrt {e \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

2/3*I*a*(e*sec(d*x+c))^(3/2)/d-2*a*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1
/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)+2*a*e*sin(d*x+c)*(e*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3567, 3853, 3856, 2719} \[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=-\frac {2 a e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+\frac {2 a e \sin (c+d x) \sqrt {e \sec (c+d x)}}{d} \]

[In]

Int[(e*Sec[c + d*x])^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(-2*a*e^2*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (((2*I)/3)*a*(e*Sec[c + d*x
])^(3/2))/d + (2*a*e*Sqrt[e*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+a \int (e \sec (c+d x))^{3/2} \, dx \\ & = \frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+\frac {2 a e \sqrt {e \sec (c+d x)} \sin (c+d x)}{d}-\left (a e^2\right ) \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx \\ & = \frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+\frac {2 a e \sqrt {e \sec (c+d x)} \sin (c+d x)}{d}-\frac {\left (a e^2\right ) \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = -\frac {2 a e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 i a (e \sec (c+d x))^{3/2}}{3 d}+\frac {2 a e \sqrt {e \sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.01 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.13 \[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=\frac {2 a e e^{-2 i d x} \sqrt {e \sec (c+d x)} (\cos (c+3 d x)+i \sin (c+3 d x)) \left (-2 i+i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\tan (c+d x)\right )}{3 d} \]

[In]

Integrate[(e*Sec[c + d*x])^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(2*a*e*Sqrt[e*Sec[c + d*x]]*(Cos[c + 3*d*x] + I*Sin[c + 3*d*x])*(-2*I + I*Sqrt[1 + E^((2*I)*(c + d*x))]*Hyperg
eometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + Tan[c + d*x]))/(3*d*E^((2*I)*d*x))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 410 vs. \(2 (105 ) = 210\).

Time = 3.33 (sec) , antiderivative size = 411, normalized size of antiderivative = 4.57

method result size
default \(\frac {2 a \left (i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )-i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )+2 i \cos \left (d x +c \right ) F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-2 i \cos \left (d x +c \right ) E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+\sin \left (d x +c \right )\right ) \sqrt {e \sec \left (d x +c \right )}\, e}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 i a \left (e \sec \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}\) \(411\)
parts \(\frac {2 a \left (i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )-i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )+2 i \cos \left (d x +c \right ) F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-2 i \cos \left (d x +c \right ) E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+i F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-i E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}+\sin \left (d x +c \right )\right ) \sqrt {e \sec \left (d x +c \right )}\, e}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 i a \left (e \sec \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}\) \(411\)

[In]

int((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*a/d*(I*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos
(d*x+c)^2-I*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
cos(d*x+c)^2+2*I*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*cos(d*x+c)-2*I*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*cos(d*x+c)+I*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1
))^(1/2)-I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+s
in(d*x+c))*(e*sec(d*x+c))^(1/2)*e/(cos(d*x+c)+1)+2/3*I*a*(e*sec(d*x+c))^(3/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.29 \[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=-\frac {2 \, {\left (\sqrt {2} {\left (3 i \, a e e^{\left (3 i \, d x + 3 i \, c\right )} + i \, a e e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + 3 \, \sqrt {2} {\left (i \, a e e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a e\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )\right )}}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

-2/3*(sqrt(2)*(3*I*a*e*e^(3*I*d*x + 3*I*c) + I*a*e*e^(I*d*x + I*c))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I
*d*x + 1/2*I*c) + 3*sqrt(2)*(I*a*e*e^(2*I*d*x + 2*I*c) + I*a*e)*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, e^(I*d*x + I*c))))/(d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=i a \left (\int \left (- i \left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}\right )\, dx + \int \left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((e*sec(d*x+c))**(3/2)*(a+I*a*tan(d*x+c)),x)

[Out]

I*a*(Integral(-I*(e*sec(c + d*x))**(3/2), x) + Integral((e*sec(c + d*x))**(3/2)*tan(c + d*x), x))

Maxima [F]

\[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=\int { \left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}} {\left (i \, a \tan \left (d x + c\right ) + a\right )} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((e*sec(d*x + c))^(3/2)*(I*a*tan(d*x + c) + a), x)

Giac [F]

\[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=\int { \left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}} {\left (i \, a \tan \left (d x + c\right ) + a\right )} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(3/2)*(I*a*tan(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x)) \, dx=\int {\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right ) \,d x \]

[In]

int((e/cos(c + d*x))^(3/2)*(a + a*tan(c + d*x)*1i),x)

[Out]

int((e/cos(c + d*x))^(3/2)*(a + a*tan(c + d*x)*1i), x)